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Absuact

The long lifetimes, delicate nature and stringent pointing

requirements of large space structures such as Space Station

Freedom and geostationary Earth science platforms might

require that these spacecraft be monitored periodically for

possible damage to the load carrying structures. A review of the

literature in damage detection and health monitoring of such

structures is presented, along with a candidate structure to be

used as the test bed for future work in this field. A unified

notation and terminology is also proposed to facilitate

comparisons between candidate methods.
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number of independent stiffness elements or

substructures

number of measured modes

number of degrees of freedom

number of sensors

n x n updated mass matrix

n x n updated stiffness matrix

Connectivity matrix for mode i

n x n analytical system damping matrix

n x n frequency-stiffness sensitivity matrix

n x n analytical stiffness matrix

n x n analytical mass matrix

elements of stiffness matrix with largest %

adjustment
m x I vector of modal coordinates for mode i

nodal displacement vector

n x m updated analytical mode shape vectors

n x m expanded and orthogonalized mode

shape vectors of undamaged structure

n x m expanded and orthogonalized mode

shape vectors of damaged structure

matrix of Lagrange multipliers

m x m diagonal matrix of squared circular

frequencies of undamaged structure

m x m diagonal matrix of squared circular

frequencies of damaged structure

n x m expanded mode shape vectors of

undamaged smJcture

n x m expanded mode shape vectors of

damaged structure

system circular frequency for mode i
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s measured modal displacements for mode i

n-s unmeasured modal displacements for

mode i

n x 1 vector of modal displacements for mode

i

Introduction

Future structures in space will be orders of magnitude larger and

more complex than their predecessors. Structures such as the

space station Freedom will typically be built around a large

flexible frame and consist of truss members, habitat and

experimental modules, flexible and articulating appendages,

along with numerous utility trays and moving parts. The

complexity and size of these structures, along with the need to

design the spacecraft to be lightweight, strong and modular for

ease of expansion, repair and modification, all require that the

integrity of the structures be monitored periodically.

Several researchers have proposed methods of detecting damage

to large space trusses and locating the site of this damage based

on changes in the vibration frequencies and modes of the

structure. A research program underway at the NASA Langley

Research Center is using a hybrid-scale model of the space

station as a test-bed for studying the dynamic behavior of such

structures. As part of this program, researchers plan to study the

implementation of an on-orbit damage location scheme.

Results to date indicate that it may be possible to use the

reactkm control systems of the space station to perform an on-

orbit modal test of the structure and extract frequency and mode

shape data which might be used in this damage location

technique.

The purpose of this paper is to provide a comprehensive

literature review covering those damage location methods based

on knowledge of the dynamic properties of the structure. Some

of the most important aspects that make on-orbit verification

and identification of truss structures different from the

equivalent processes on the ground are also discussed. In

addition, results from the current effort have indicated the need

for a generally accepted notation and terminology to allow

researchers to readily compare their methods and experimental

results. Finally, it is proposed that the Dynamic Scale Model

Technology (DSMT) hybrid scale space station model be used

as the benchmark test bed for future work.

This paper draws heavily from three sources. The Task

Committee on Methods for Identification of Large Structures in

Space published the report "Identification of Large Space

Structures On Orbit ''1 in 1986. This report provides an



excellent overview of many of the issues central to system

identification of large space structures. The bibliography is

extensive and the report contains several chapters that are of

particular interest for on-orbit testing and damage location.

More recent information about on-orbit modal identification

has been taken from in-house progress reports and briefings of

the Modal Identification Experiment (MIE) 2- a research

program at the NASA Langley Research Center. The MIE

program is performing extensive research into procedures for

carrying out an on-orbit verification and modal identification of

the space station Freedom during and after each phase of

assembly. Topics covered in this research include optimal

sensor placement, baseline excitation definition and data

acquisition.

The third key source for this paper is the research of Dr. S. W.

Smith. Smith's doctoral dissertation, "Damage Detection and

Location in Large Space Trusses ''3, contains a large

bibliography as well as comparisons and evaluations of many

of the candidate system identification methods.

Damage Location Methodology

Problem Description

For purposes of the current research, "Large Space Structures"

will refer to spacecraft such as space station Freedom,

geostationary platforms such as those proposed for Mission to

Planet Earth, and other structures that are predominantly

erectable or deployable trusses to which a variety of payloads

are attached. Standard assumptions will be made, including the

assumption that the structure behaves linearly. In

addition, damping in the structure is assumed small

and therefore a proportional damping model is

used.

For a spacecraft in orbit there are numerous

mechanisms by which damage can be introduced

into such a complex system. Damage scenarios

ranging from radiation degradation of load carrying

members, micrometeorite impact, loosening of

joints due to excessive vibration, all have to be

considered and studied. Some damage scenarios

may lend themselves well to visual detection,

while others will be invisible, on external

inspection.

In general, the problem of locating a damaged site

on a structure can be equated to locating regions

where the stiffness or load carrying capacity has

been reduced by a measurable amount. These

regions might be identified by performing an on-

orbit modal test using the spacecraft reaction

control systems to excite the structure and produce
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modal response characteristics such as frequencies and mode

shapes. These parameters are then compared to a baseline set of

parameters. A variety of algorithms have been proposed that

will trace differences in the two sets of data to specific or likely

damage locations. The problem is complicated significantly

by the test environment when the test is performed on orbit and

these difficulties will be discussed in subsequent sections.

Prooosed Methodolozv

A flow chart illustrating the approach for damage location that

is being u_d in the DSMT program is shown in figure 1. Each

of the vertical arrows represents a process that produces the

result in bold text that follows. The horizontal arrows represent

processes by which data is exchanged between the analytical

model and the on-orbit structure. Each of the studies that is

discussed uses a particular algorithm for each of these

processes. The purpose of this paper is to consider each of

these steps and how different investigators have chosen to

attack each process. The figure depicts a general scheme for the

design of a large spacecraft, the on-orbit identification of its

dynamic characteristics and the algorithm for health monitoring

and damage detection and location, The column on the left

shows the stages through which the analytical model

progresses, from an initial design model to a finite element

model which has been modified using data obtained from on-

orbit measurements. The column on the right shows a similar

evolution of the actual hardware, from design studies and ground

testing of individual components to the full on-orbit spacecraft

dynamic characteristics. The boxed region is the heart of the

damage location process. Two kinds of iterations occur: the

first run through serves to verify the newly assembled and

Component Ground Testing
Excitation and Sensor Placement

Component Synthesis

Spacecraft 4

On-Orbil Testing and Data Acquisition

Dynamic ResPonse Measurements

Modal Ideraificat ion
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Figure 1: Damage Location Approach
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presumed undamaged spacecraft via system identification

methods. During subsequent passes through this boxed portion

of the flow-chart, the measured data is assumed to be from a

potentially damaged spacecraft.

available for researchers to use. Figure 2 is a f'mite element

model of the HMB-2 (Hybrid Mission Build-2) configuration.

Based on design studies and years of concept development, an

analytical model is created, usually in the form of a finite

element model. This model is used to predict mode shapes and

natural frequencies, as well as the forced response of the

structure. Using the static and dynamic finite element

solutions, components of the structure are fabricated and

individually subjected to detailed ground tests. The mass,

stiffness and damping matrices of the finite element model are

updated based on results of the component tests. The final pre-

launch version of the finite element model is used, among other

things, in sensor placement studies such that the

accelerometers and strain gauges and other instruments are

placed in as close to an optimal configuration as possible. The

sensors will be used to extract system frequencies and mode

shapes once the spacecraft has been assembled in orbit.

After assembly, the structure is subjected to a series of on-orbit

tests during which forced response measurements are acquired

and used in a modal identification of the completed structure.

Once again this data is used to update the finite element model to

ensure that it accurately predicts the true response of the

structure and can be used to predict response to expected

operational loads and identify damage. The updated finite

element model is then stored to be used as the reference (or

undamaged) configuration against which a damaged model can

be compared to accurately predict the location and magnitude of

damage.
l_esearch test-bed

To date most research into structural damage detection has been

performed by a handful of researchers at a wide variety of sites

with little or no coordination in research efforts. Many of

these methods have been tested using mass-spring test models

or simple planar truss models. Few of the standard test

problems truly embrace the essence of large flexible structures

in space and as such are poor judges of the performanc, of a new

method. It would be considerably more beneficial for these

methods to be tested on a more realistic model.

An ideal candidate for such a standard test-bed is the DSMT

hybrid scale model at the NASA Langley Research Center. As

described earlier the DSMT model is designed as an experimental

test-bed for the space station Freedom research program.

Currently, an early build configuration is suspended by cables

from a 40 foot high gantry, and all the components are

available to build and suspend the current version of the

"assembly complete" configuration, Starting with the MB-2

(Second Mission Build) configuration, finite element models

and test data for each assembly flight configuration will be

GN&C Pallet

RCS Pallet

EPS Radiator

Alpha Joint

Solar Array

Figure 2. DSMT llybrid Scale ttMB-2 Model

As part of the DSMT program, all components of the model are

being tested individually. One of these components consists of

eight bays of the hybrid model truss, This component is

currently being used to verify the dynamic characteristics of the

hybrid truss assembly and has been used in some preliminary

damage detection efforts. Figure 3 is a finite element depiction

of the eight bay truss.

TaMe I shows analytical frequencies for the first five modes of

the eight bay truss with no damage and also frequencies for four

damage cases as identified in figure 3. Damage here refers to a

particular strut missing. This table demonstrates that

differences in the natural frequencies can be very small indeed,

and this information, by itself, is not in general sufficient to

detect or h)cate the damage.

Table 2 contains the mode shape coefficients at node number 1

for tile first bending mode and the same four damage cases. This

table clearly indicates that the mode shapes can be drastically

damage case 3 damage case 1

(z-batten) (x-batten)

damagec_2 \ I

\ I
d=dge.ed_:_) 4 ,I I

Node 1

3 Figure 3. Cantilevered Eight Bay Truss With Damage



mode l

mode 2

mode 3

mode 4

mode 5

NO DAMAGE

15.15

15.68

51:31
u,

72.05

77.52

DAMAGECASE1

15.15

15.68

51.32

72.07

77.53

DAMAGE CASE 2

10.26

15.15

51.33

72.15

74.54

DAMAGE CASE 3

15.15

15.68

51.32

72.08

77.53

DAMAGE CASE 4

14.50

15.49

37.29

66.26

75.24

Table I. Natural Frequencies for Eight Bay Truss (Frequencies in ttz)

x- lrans

,-- y-trans

z-trans

x-rotat

y-rotat

z-rotal

...._ DAMAGE

-7.9612

0.0000

7.9612

0.0648

-0.0001

0.0648

DAMAGE CASE 1

-7.9621

-0.0001

7.9608

0.0648

-0.0001

0.0648

DAMAGE CASE 2

-7.8171

- 1.4741

-7.8170

-0.0609

0.0000

0.0609

DAMAGE CASE 3

-7.9608

0.000 i

7.9621

0.0648

-0.0001

0.0648

DAMAGE CASE 4

3.3623

-0.5182

-10.9481

-0.0796

-0.0461

-0.0224

Table 2. Mode Shape Coefficients at Node 1

affected by different damage cases and therefore may contain

more useful information for determining damage location than

the frequencies alone. Besides the modes and frequencies, the

kinetic and strain energies for each mode also contain important

information that will help in locating damage. The DSMT

program will investigate the use of all these quantities,

In preparation for using the full DSMT model to study the

damage location problem, the methods will first be developed

using the eight bay truss. Since this is a clean truss that

demonstrates many of the characteristics that will be found on

large space structures it is an ideal candidate for a preliminary

test-bed for damage location studies. Modal tests of each of the

DSMT configurations will provide the baseline mass and

stiffness matrices for tests with missing members or loose

joints. The models will also be used to perform excitation and

sensor placement studies in conjunction with the on-orbit

Modal Identification Experiment. Data from all of these tests

will be available to researchers in industry and academia to use

as verification tools for new methods or new applications for

existing methods.

Analytical Modelling

Truss structures can be modeled as discrete structural dynamic

systems and thus the analytical model of such a structure

consists of linear second order differential equations. These

equations are often represented by their finite element

formulation

[M] {J/} + [O] {+_} + [K] {x} = {f(t)} (1)

For design studies a detailed finite element model containing on

the order of hundreds of elements and thousands of degrees of

freedom is created to study the static behavior of the structure.

It is often computationally inefficient to use the entire finite

element model for a dynamic analysis which requires the

repeated solution of the eigenvalue equation:

([K1- =o
There are several ways to reduce the size of the model to increase

the solution speed. Some of the more common methods in use

and being improved are static and dynamic reduction methods;

equivalent and continuum modelling; and component modal

synthesis. These, and other reduction techniques often require

significantly less computational effort, but introduce

assumptions and idealizations that almost always reduce the

accuracy of the results.

Ground Test Methods

The size and cost of structures such as the space station make it

prohibitive, if not impossible, to perform full scale system

testing during the design phase. In fact the space station will be

the first manned spacecraft that will not have undergone full

vibration testing on the ground prior to launch. It is, however,

ix, ssible to lest individual components and sub-assemblies of

the structure, along with tests of fully mated scale models. The

component tests can be used to improve the analytical models at

the component level (for example, accurate mass and damping

properties). The scale models can be used to explore excitation

and sensor placement methods, along with component

synthesis techniques.

Scale Model Techniques

Scale model techniques allow for insightful tests to be

conducted on smaller versions of the spacecraft. Letchworth

and McGowan 4 discuss the DSMT program at the NASA

Langley Research Center, which has as its objective the

4



development of a verified capability for predicting the on-orbit

structural dynamic behavior of large, muhi-bodied, joint-

dominated, articulated, flexible space structures.

The approach in the DSMT program is to use data from ground

tests of fully mated, near-replica, dynamic scale models to

improve theoretical analyses and thereby improve the ability to

predic t full-scale on-orbit structural dynamics. The DSMT

program is currently using a hybrid scale model of the space

station, where hybrid refers to the 1/10th scale overall

geometry and l/Sth scale dynamic properties.

Component Mode Synthesis

A large number of papers discuss the analytical aspects of the

Component Mode Synthesis method (CMS) that was first

proposed by Hurty 5 in 1965 and further developed by Hou 6

(1969), Craig and Bampton 7 (1976) and Hale and Meirovich 8

(1982). Very few papers, however, have discussed the use of

CMS in experimental testing. Martinez and his colleagues 9

discuss the use of experimental mode data and Baker 10 identified

several shortcomings of some of the standard CMS methods

when used in experimental modal analysis. Still, very little

exists in the literature concerning the synthesis of structural

response of systems based on experimentally determined

component modes and frequency data. The DSMT program has

initiated a series of vibration tests on each of the scale model

_:omponents and major substructures. The data from these tests

will be used to evaluate the existing CMS methods and if

necessary develop more realistic and applicable approaches.

For the space station it is likely that each stand-alone

component such as the solar arrays, radiators, equipment pallets

and habitation modules, will be thoroughly tested prior to

launch and assembly. The dynamic characteristics of each

component will be well known individually, but not as a part of

the assembled structure. The task of ground-test synthesis

methods will be to accurately predict the response of the

spacecraft when each of these components is mated to the truss
and other structural members of the infrasa'ucture.

Excitation Placement.

In ground tests of components or scale models, the source of

transient excitations for modal tests are generally

electrodynamic shakers. The excitations can be applied at any

location on the structure in order to excite particular modes of

interest. The excitations that will he used for modal testing on

orbit will be provided by the reaction control system (RCS)

thrusters. These will be positioned along the structure in pre-

determined locations. In order to perform a modal test for

system identification or damage location purposes the thrusters

will be fired in a particular sequence so as to excite a given set of

modes. The placement of the thrusters will be determined by

the control system needs and the set of excitable modes may not

be optimal for structural dynamic parameter identification.

Damage location or system identification algorithms must take

these factors into consideration.

Researchers at NASA Langley Research Center have initiated

studies to determine the best way to excite the modes of interest

on a large space structure. A recent MIE project review 2

presented results of an excitation sensitivity study which

evaluated various excitation parameters such as the type,

duration, direction and size of the excitation, to aid in designing

the baseline excitation for modal identification. The results of

this study indicate that a random forcing function will provide

the best performance for modal identification. In addition, the

forcing functions observed during a nominal reboost maneuver

are suitable for some modal ID tests, but not as good as the

random forcing function.

Sensor Plaqement

In general only a subset of the desired number of sensors will be

available for use in system identification and health

monitoring. Thus the question of sensor placement becomes

one of paramount importance in designing an on-orbit modal

test program. The system has to be designed with built in

redundancy to compensate for the likelihood of sensor

malfunction as well as poor initial location. Ground tests have

the advantage of allowing for rapid replacement of sensors

whereas if a sensor goes off-line in space, the identification

system will be required to function correctly without the sensor

for some (extended) period of time before it can be replaced or

repaired. In addition, optimal sensor placement is still an art

form even on the ground. It is likely that even after

considerable effort has been made to locate the best positions

for all the sensors, initial verification once on orbit will show

that some of the sensors are located near zero displacement

locations (nodes) of important modes. These sensors will thus

be useless until some later time when they can be relocated. The

design of the system has to take all of this into account in order

to perform as required.

Kammerl I presents the Effective Independence (Eft) method for

sensor placement which is based upon ranking the contribution

of each candidate sensor location to the linear independence of

the corresponding target modes. In an iterative fashion,

locations which do not contribute significantly to the

independent information contained within the target modes are

removed. Within a relatively small number of iterations, the

initial candidate set of sensor locations can be reduced to the

allotted number in a suboptimal manner.

Lira 12 extends the EfI method of Kammer to provide a

systematic procedure to define candidate target modes and to

optimize the sensor placement to recover these modes. The

imtmrtant modes are defined using the strain and kinetic energy

of each mode from a finite element modal analysis along with
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Figure 4. On-orbit Data Acquisition

the given excitation locations and the effective independence of

the excitation influence matrix. The important modes are those

modes required to accurately characterize the low-frequency

response of the structure. The candidate target modes are then

those excitable modes that are also among the important modes.

Using the same iterations as proposed by Kammer the initial set

of possible sensor locations is gradually decreased using the Ell

method. Preliminary results are promising and a variation of

this scheme is likely to be the method of choice in the current

studies.

station. Ground test validation is expected using the

DSMT scale model.

Madden and Wilhelm 14 describe the Space Station

Data Management System (DMS) architecture. The

backbone of the architecture is a token ring fiber optic

network connecting processing, data storage, data

acquisition and workstation nodes. The DMS will

provide no serious obstacles or changes to normal data

acquisition techniques, but limited data storage and

processing capacity will require that data be

transmitted via relay satellite to ground processing

stations. There are several key differences in

obtaining modal data from a laboratory experiment

compared with acquiring the same data from an

orbiting spacecraft.

Soucy and Decring 15 discuss how the operating conditions for

the data acquisition equipment affects the quality of the data in

modal testing. Concerns raised include effects of different

excitation levels, exciter locations, methods of fastening the

transducer cables to the test structure, methods of exciter

suspension, and excitation configurations.

Mode Expansion and Orthogonalization/

Test-Analysis Model Reduction

On-orbit Testing_ and Data Acquisition

The process of obtaining modal data from an orbiting spacecr',fft

is portrayed in figure 4. The on orbit modal test will use the

reaction control system (RCS) thrusters to excite a set of modes.

The response of the structure to this excitation will be recorded

in the form of acceleration time histories at s locations on the

structure. The raw data from the accelerometers will be filtered

and conditioned and then converted to digital form. In general

this data will then be transmitted via data relay satellites such as

the TDRSS family, to ground stations where it can be processed.

Cooper and Johnson 13 describe the ongoing development of

the Space Station Freedom on-orbit Modal Identification

Experiment. The MIE is being designed to obtain a

sufficient quality and quantity of on-orbit, time domain test

data composed of measurable accelerations taken over

sufficient time and adequately distributed spatially to realize

important modes for a sequence of intermediate and final

build configurations of space station Freedom. Design of

the experiment is being performed jointly at NASA Langley

Research Center, McDonnell Douglas Space Systems

Company and The Structural Dynamics Research

Corporation. To date, the feasibility of performing an on-

orbit modal identification has been established and a detailed

experimental design is underway. Simulations have been

performed using an excitation based on a reboost of the

For a structure in orbit, a predetermined number, s, of sensors

will be permitted, whereas the full finite element model that will

be verified has n degrees of freedom. Current thinking in the

design of space station Freedom calls for 100 - 200

accelerometers while the structural model contains well over

1060 degrees of freedom.

With fewer measurements than physical degrees of freedom, the

mode shape vectors from the finite element analysis cannot be

compared directly with those obtained from the test. There are

two possible ways to eliminate this problem. In the first

approach, each of the test modes is expanded from the s

Analysis Frequencies
and Modes

[Ca] " MMe
.In nxn asured Frequencies

and Mode Shapes
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6 Figure 5: Mode Shape Expansion and Orthogonalization



measured dofs to an approximation of the n physical dofs using

the FEM mass and stiffness matrices. The disadvantage of using

this method is that any errors in the FEM model are included in

the expanded test modes and thus corrupt the test data, perhaps

leading to errors in the system identification process. To date

this has been the method used in most damage location research.

In the second approach the FEM mass and stiffness matrices _e

reduced to the test degrees of freedom using a transformation.

The reduced-order model is known as a test-analysis model

(TAM), and results in an sxs mass matrix and an sxra matrix

of mode shape vectors that can be directly compared with the

test mode shapes. There are several advantages to this

approach. First, the test and analysis data remain separate

throughout the process, thus eliminating the contamination

problem. Secondly, the TAM development process can be used

to identify dynamically important degrees of freedom which

should be considered as possible locations for sensors as

described above. Finally, the TAM and test data are at most s

dimension matrices which can be considerably smaller than the

full n dimensional analytical matrices. This is likely to result

in considerable savings in computational effort.

Mode Expansion and Orthogonalization

As mentioned previously, most of the work by Smith and others

in damage location has used the first of these approaches and

expanded and orthogonalized the test modes. Their results have

been well documented and will not be repeated here in any detail.

Beanie and Smith 16 summarize these methods as applied to

structural identification problems and recast many of them in a

more unified form and suggest modifications that improve many

of them. The most commonly referenced methods are the

expansion method introduced by Berman and Nagy 17, and the

orthogonalization technique introduced by Baruch and Bar

Itzhack 18. Berman and Nagy use a "dynamic" expansion

technique for the reordered, partitioned eigenvalue problem:

where {@I } represents the s measured modal displacements and

{¢2 } rcprescnts the unknown mode shape information at the

remaining n-s dofs. Rearranging of the second equation

permits a solution for the unmeasured dofs

1 2}= M,)-t },

as long as the first term on the right hand side of (4) is

nonsingular for each of the i=1,2 ...... m. For each of these

modes the measured data is individually expanded to produce a

set of mode vectors pP ]n x m that will not, in general, be

orthogonal to the system mass matrix. Baruch and Bar

hzhack's optimal orthogonalization technique can then be used

to adjust the expanded modes in order to satisfy the

orthogonality relationship. This technique forces the expanded

modes to satisfy the orthogonality relationship in an optimal

way. These corrected modes, now orthogonal to the mass

matrix, are closest to the expanded modes in a weighted

Euclidean sense.

The system equivalent reduction and expansion (SEREP)

method was presented by O'Callahan, Avitabile and Riemer 19.

Independently, Kammer 20 presented a modal reduction

technique for test-analysis-model (TAM) development which

leads to the same expansion process in which the mode shape

vector, in the physical coordinates, is expressed as a linear

combination of the m analytical model mode shapes predicted

by a finite element analysis:

(5)

Note that (5) has been partitioned into the measured and

unmeasured dofs. Using a generalized inverse, the first of eqs.

(5) is solved for the vector of modal coordinates in terms of the

measured dofs.

T -I T

{q},'=([*'_l [_'_l) [*'_l {0'}, : [*,'1{#1}; (6,

Equation (6) is then substituted back into the unpartitioned form

of (5) and solved for the expanded modal vector:

-- t ,t ,--f_li=[°*l[°,']]@lli i=1 ...... m (7)

Once again, the mode shape vectors {@}i are expanded one at a

time and the set is not necessarily orthogonal with respect to

the mass matrix. Baruch and Bar Itzhack's optimal

orthogonalization technique (or any other orthogonalization

approach) can be used to orthogonalize the expanded mode

shape vectors.

Recently, Beattie and Smith 21 have developed a simultaneous

expansion/orthogonalization (SEO) technique based on the

Orthogonal Procrustes problem from computational linear

algebra. A subspace defined by the set of measured dofs {_t } is

compared to a subspace defined by mode shapes from the

close as possible to t_l ] is found to be the modal coordinate

matrix [Q] . When [Q] is applied to the full analytical model

mode shapes [Oa]' an estimate of the full mode shapes
corresponding to the measured data is produced. The resulting

expanded mode shape vectors are orthogonal with respect to the

mass matrix. This method is computationally more efficient

than the dynamic expansion and SEREP. Evaluation of the

above three methods shows that performance of the SEO

technique is comparable or superior to that of the other

techniques in the test examples that were used. Once again,
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however, this comparison was performed on simplistic models

and may not carry over to larger, more complex models.

Mode] _eduction

There are several methods for reducing the mass and stiffness

matrices of an n x n t'mite element model to the s x s matrices of

a TAM. Freed 22 provides a detailed comparison of the four most

commonly used reduction methods. He compares the static

(Guyan) reduction, Improved Reduced System ORS) method,

Modal Reduction, and Hybrid reduction methods for accuracy and

robusmess. He concludes that the choice of method is very

dependant on the configuration and the modelling uncertainty

and no one method is better than the others in all cases. In

general, the process of reducing a stiffness (or mass) matrix

from a FEM to a TAM is based on the following transformation:

[K,]=[TlrlKIIT] (8)

The simplest and most common TAM procedure uses the

standard Guyan reduction 23 method, where the transformation

matrix only involves the re-ordered stiffness matrix. The IRS

method developed by O'Callahan 24 improves upon the Guyan

reduction by including mass effects in the development of the
the transformation matrix. In the Modal reduction method,

Kammer uses the FEM mode shapes as interpolation functions

in the development of the transformation matrix and does not

use the original mass or stiffness matrices. Kammer has

extended the capabilities of the modal TAM method by

developing the Hybrid TAM, which combines the accuracy of

the modal TAM with the robustness of the Guyan reduction. The

transformation matrix for the hybrid TAM is a combination of

the static and modal transformation matrices.

[Tt.r.o]:[Tsu._]+[r"Rr.o- rs_a, ][PI (9)

where P is an oblique projector matrix formed from the FEM

mode shapes,

Mode shape expansion and orthogonalization and model

reduction are essentially mathematical problems that will most

likely see improvement in the next few years. For the purpose

of damage detection studies, the important point of this

section is that at the end of the process, the algorithm has

a full n x m set (expansion) or a reduced s x m set of modal

displacement vectors with which to perform the system

identification and model verification.

System Identification and Model Verification

For the purposes of structural dynamics, "system

identification" is the process of using a limited number of

measurements to identify the modes and frequencies of the

structure and to update the analytical model of the system

to duplicate the measured response. This analytical model

can then be used to predict the structures response to

future inputs. There are numerous approaches to system

identification each of which differs mainly in the mathematical

processing of the incomplete set of measurements so as to

accurately infer the structural parameters of interesL Figure 6

shows the three states during the system identification process.

The matrices with subscript a represent the n x n analytical

matrices which are then updated using the expanded and

orthogonalized modes [¢_e]" The resulting n x n "updated"

matrices are used in any subsequent analyses as the baseline,

undamaged model of the structure.

Smith and Hendricks 3 carried out detailed evaluations of several

candidate identification methods with respect to their suitability

for damage detection applications. In a more recent paper,

Smith and Beattie 16 provide a detailed mathematical

background of the matrix update problem, specifically related to

structural identification. They review some of the most

Ix_pular methods of matrix adjustment, place them in a modem

framework and link some of them to well known problems in

linear algebra and optimization. The most popular and

applicable system identification methods are described below.

Baruch 25 introduced a stiffness update method which was later

used by Berman and Nagy 26 in developing the Analytical

Model Improvement (AMI) method. The first step in the

method corresponds to expanding and orthogonalizing the

measured mode shape vectors as described by equations 3-6

alx_ve. Given the expanded modal matrix and the analytical

mass matrix (which is assumed to be accurate), an improved

stiffness matrix is sought which minimizes the difference

between the updated matrix and the analytical matrix, while

satisfying the eigenvalue equation, the orthogonality relation,

and symmetry. The minimization is carried out using a

Lagrange multiplier formulation. The method does not require

iteration or eigenanalysis and is thus suitable for large models.

The major drawback to this method is that it does not take into

account the connectivity of the structure and could thus result in

an updated stiffness matrix that has unrealistic load paths.

Despite this drawback the method is still quoted often in the

literature.



Kabe27 presented a technique which preserves the zero-non-zero

pattern of the original stiffness matrix in the updated result,

precluding unrealistic load paths in the the updated model. The

stiffness matrix adjustment (KMA) method uses the analytical

stiffness matrix [Ka], the assumed known mass matrix [Mal, the

n x m matrix of expanded mode shapes [_e] and the

connectivity of the original stiffness matrix (assumed to be

correct), to produce the adjusted stiffness matrix. As in the

AMI method, a Lagrange multiplier formulation is used, but the

error matrix that is minimized is defined such that it is

independent of the system mass and the stiffness coefficient

magnitudes

. . (g,_g.)5
J (lO)

In addition, the adjusted stiffness matrix is related to the

original stiffness matrix by the following relation

(,,

where the operator • defines an element-by-element

multiplication that ensures the zero-non-zero pattern is

maintained. Lagrange multipliers are used to expand the error

function to include the eigenvalue equation and symmetry

constraints. Since the expanded and orthogonalized modes are

being used, solving for the Lagrange multipliers will result in

an adjusted model that exactly reproduces the measured modes.

Once these Lagrang¢ multipliers have been found, the adjusted

stiffness matrix obtained by the KMA method is given by

[KI=[,,.I-¼([K.I.[,,.I).(t l[*.f
where [A] is the n x m matrix of Lagrange multipliers. This

method works very well for small systems and produces an

updated stiffness matrix that has the same connectivity as the

analytical model, and exactly reproduces the measured modes

and frequencies. Unfortunately it is computationally inefficient

for large problems.

The Projector Matrix method (PMM) presented by Kammer 28 is

a reformulation of Kabe's method. As such it preserves

the connectivity of the original model in the

optimally adjusted stiffness matrix, but requires less

matrix manipulation prior to solution and less overall

computational effort. The method uses projector

matrix theory and the Moore-Penrose generalized

inverse to correct the analytical stiffness matrix.

Although this formulation is better than the original,

the PMM is still inefficient for very large problems.

Chen and Garba 29 proposed a method to calculate the

sensitivity of the eigemvalues and eigenvectors to the

structural model parameters such as mass and stiffness

matrix elements. These sensitivities are in the form of the

Jacobian matrix. The advantages of the method are the

applicability to large complex structures without the

requirement of apriori knowledge of the analytical expressions

for the mass and stiffness matrices, and a cost effective

approach for the recomputation of the eigendata. This method

also allows the use of other measurements such as modal forces,

kinetic energy distribution, and strain energy distributions in

the estimation procedure.

Very recently Smith and Beattie 30 have proposed a variety of

secant-method adjustment techniques which appear to be

superior in many ways to previous methods. Much of the work

of these authors has been formulated specifically with the

damage location problem in mind and thus appear to be the most

likely to succeed. In addition to proposing new methods,

references 16 and 30 reformulate the AMI and KMA methods to

show that they are in fact similar to the secant-methods that

they propose. These methods have only recently been

pttblished and have not been tested against any standard

problems, but appear to be very promising as damage location

tools.

Model Comparison and Damage I._cation

Once the spacecraft is in orbit and the structural parameters have

been identified, periodic monitoring of the load carrying

properties of the truss will be carried out. The ideal time for

this to occur would be during a reboost firing of the RCS

thrusters which would be used as the excitation source for the

modal identification process. The data acquired from such a test

would then be expanded and orthogonalized as described above

and the resulting mode shape vectors and frequencies will be

taken to be the current or "damaged" model. This damaged

model, along with the updated finite element model obtained

before, will be used in the damage location process. This

process searches for a stiffness matrix that maintains the zero-

non-zero pattern of the updated stiffness matrix, and thus does

not introduce unrealistic load paths, while reproducing the

modes observed during the test. This is almost a repetition of

the system identification process except that instead of
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updating the analytical model with the new information, the

process seeks out the elements of the stiffness matrix that

change the most in order to produce the observed results. These

elements are the most likely contributors to any damage. Once

these stiffness matrix elements have been identified a physical

map of the geometry can be used to determine which elements of

the structure are likely contributors to the damage. This

technique is predicated on the assumption that the undamaged

mass matrix was unchanged from the original observation.

Smith 3 uses Kabe's stiffness matrix adjustment method to

indicate which elements of the stiffness matrix have changed by

the largest percentage. Two lists of stiffness matrix elements

that receive the most adjustment in the identification process

are produced by searching the percent-adjusted stiffness values

using one filtering threshold for the diagonal terms and a second

threshold for the off diagonal terms. Two thresholds are used

because the diagonal and off-diagonal terms are affected

differently by the damage. Using matrix graph theory the two

lists combine to form a "damage subgraph" of the connectivity

matrix, thus identifying the truss element(s) with reduced

stiffness. Simulations with 'exact' (i.e. no noise) data show

that the algorithm locates many, but not all possible damaged

members. For the majority of the damaged members in the test

cases, damage was detected easily. However, insensitivity in

the structure response prevents the location of damage to certain

truss members. The work described here will be extended using

the DSMT hybrid scale model.

Chen and Garba 31 postulate that the location of damage can be

found by identifying those degrees of freedom whose kinetic

energies are different from those of the undamaged system.

Rearranging equation (2) and premultiplying by a diagonal
r- I ,,_modal matrix [" _']i results in the kinetic energy on the right-

hand side and the strain energy on the left

[" .3)
Damage is located by determining the elements connected to the

dof with the largest changes in both the kinetic and strain

energies. Chert and Garba go even further and propose a method

to quantify the extent of the damage. Using what they call the

"connectivity matrix of each measured mode", they formulate a

constrained optimization problem which seeks the changes in

the stiffness matrix elements by minimizing the Euclidean norm

of these changes subject to the connectivity and eigenvalue

constraints:

E--V2pJ +{;tI'({Y}-Icl (14)

where [_.] is the matrix of Lagrange multipliers and

[r]=( (,,)
The optimal solution consists of a vector {Ak/j} containing the

changes in each of the independent stiffness matrix elements

{_o}=[Clr([Cl[Cr])"{r} (16)

This list can be searched using a variety of threshold techniques

t6 determine the subset {k..*} of the stiffness elements that
q

change the most. Using the connectivity information the

location of these elements in the structure is easy to determine.

The difficulty lies in determining which structural elements

contribute to the change in stiffness. The [Ak:;} are stiffness
.M

changes at nodes. In a typical truss structure each node is shared

by several elements and it is difficult to determine which of the

elements contributes the most to the damage. The method is

demonstrated with some success using a simple spring mass

model and a more complicated truss. The computation

requirements for the method are quite high but the method shows

considerable promise if the final element location can be

resolved. Application of the method to a more complicated

structure such as the DSMT model would be a suitable test of its

performance.

Hajela and Soeiro 32 present a slightly different measure of

damage and use an unconstrained minimization approach to

locate the damaged members. In addition, they use both the

static and modal response of the structure in their identification

and location scheme. Damage is represented by a reduction in

the elastic properties of the materials. The stiffness of each

member is expressed in terms of each of the elastic and

geometric properties

[KI,j=[K(A,I,J,L,t,E,G)]q (17)

The net changes in these properties are lumped into a single

design variable d i in the unconstrained minimization problem

in which the difference between the analytical and measured

response is minimized. The response in question can be the

dynamic or the static response or a combination of the two.

Three different implementations of this approach are discussed,

each offering different approximation or modelling strategies to

combat the the high computational demands of the method for

large models. In the first approach a select group of dominant

variables are allowed to vary with the others fixed. The

Broyden-Fletcher-Goldfarb-Shanno variable metric method is

used for function minimization. The set of variables is rermed

after a prescribed number of cycles and the dominant variables

are modified based on the results. The second approach used

exluivMent reduced order models or the structure to first locate the

approximate region of damage. The full model is then solved

considering only the parameters d i corresponding to the

members of the damaged region(s). The third approach uses

substructuring techniques in conjunction with reduced order

models. The regions containing the damage are solved

separately with appropriate boundary conditions using an

equation error approach to the system identification. The

method was applied to a series of "representative" truss

structures and results were favorable with more research

pending. Once again, the performance of the method as

10



compared to others is difficult to assess as it has not been

applied to a "standard" problem.

Chou and Wu 33 present sevexal procedures that use the measured

modal parameters in the modal or physical space, in

conjunction with the element connectivity of an analytical

model. A set of error factors associated with structural elements

in the analytical model are determined using a generalized

inverse technique to spatially quantify the structural damage.

The updated system maffices representing the damaged structure

can be verified by the assembly of the spatially identified

individual element mass and stiffness matrices.

Stubbs, Broome and Osegueda 34 extend the concept of

continuum modelling of structures to the problem of detecting

construction errors or damage in large space structures. The

method assumes that the structure can be modelled either as a

continuum or as a series of continuum substructures. An error-

sensitivity matrix for the continuum is developed as

I 1--

Where the Z i represent the sensitivity of the structure to

changes in frequency, stiffness, mass and damping ratios

respectively. [F] is the error-sensitivity matrix for the

particular continuum model. Using a non-dimensional measure

of stiffness reduction, ai=Aki/ki , the sensitivity of the system

to changes in stiffness only can be shown to be

{Z,a#}=[Flla } (19)

Assuming that mass and damping remain essentially unchanged,

the changes in frequency for each mode and equation 17 can be

used to solve for the Ak i .

Walton, lbanez, and Yessaie 35 propose an approach to damage 3

detection that uses the concept of a substructure transfer

function matrix (STFM). They theorize that structural changes

that are localized within a small volume can be detected or

observed much better by looking at changes in a transfer 4

function for a relatively small substructure which contains the

damaged portion than that for the global structure.

Fisette, Stavrinidis and lbrahim 36 propose a procedure for error

location based on a simple force balance approach performed on

individual elements, to map the model for unbalanced forces.

Degrees of freedom or elements possessing high unbalanced

forces are those that are likely to be contributing to the error or

damage. The method requires minimal modal information and is

il dependent of which modes are used for the procedure as long as

the modes that are used have a very high accuracy.

Glass and Hanagud 37 use a completely different method to

locate damage. Artificial intelligence techniques of

classification, heuristic search, and an object oriented model

knowledge representation are shown to be advantageous for

identifying damage in flexible structures. A finite model space

is classified by levels of abstraction into a search tree, over

which a variant of best-first search is used to identify the model

whose stored response most closely matches that of the input.

Following this output-error approach in model space, an

equation-error approach is used for numerical parameter

identification.

Concluding Remarks

A review of the literature in the fields of structural

identification, mode shape expansion and orthogonalization,

and damage location has been presented. An aggressive

research program in health monitoring and damage location in

large space structures is being developed at the NASA Langley

Research Center. Use of the DSMT hybrid scale model for

damage location research and as a universal test-bed for other

damage location methods is proposed as a means to

meaningfully compare and evaluate existing and newly

developed methods. Issues concerning on-orbit data

acquisition, data accuracy and quality have been identified as

requiring extensive research in the context of structural

dynamic system identification. Other key issues have also

been discussed briefly.
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